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Exploration in Post-Moore Era
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Our World Is Approxmate

Our World Is Approximate



Error Tolerance E.g. 1: No Golden Answer

ChatGPT

ANSWER 1

ANSWER 2
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Error Tolerance 2: No Need Exact Numerical Values

Mixed precision architecture in NVIDIA GPU

8



No Need Exact Numerical Values

• Deep neural network classifier
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Error Tolerance 3: Limitation of Human Perception

Noise doesn’t affect recognition of the sportsman [Han+, 13]
10

Picture without noise Picture with noise



Approximate Computing

11
AI accelerator IoT system

Machine learningLanguage processing Image processing

❑ Error-tolerant apps: system-level functions not affected by small errors

❑ Deliberately introduce small errors ➔ reduce power consumption

❑ Reduce power for

Embedded device



Approximate Computing

• Sacrifice accuracy for performance and energy improvement
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Approximate Circuit

❑Trade off accuracy ➔ 

reduce power, delay & area

❑Karnaugh map for a 2x2 multiplier
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[Kulkarni+, 11]

00 01 11 10

00 0000 0000 0000 0000

01 0000 0001 0011 0010

11 0000 0011 1001 0110

10 0000 0010 0110 0100

𝑏1𝑏0
𝑎1𝑎0

0111

Exact circuit

Approximate 
circuit

Error rate 

=1/16

1b

1a

0b

1a

1b

0a

0a
0b

3out

2out

1out

0out

1b

1a

0b

1a

1b

0a

0a
0b

2out

1out

0out

Fewer & simpler gates 
➔ smaller area &

lower power



New Design Space with Approx. Computing!

• Opportunities: Large design space

• Challenges: how to find low-power designs efficiently?
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Approximate Logic Synthesis
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Error Metrics

Error rate (ER): Pr( Ԧ𝑓(𝑋) ≠ Ԧ𝑓′(𝑋))

– Ԧ𝑓 is circuit function, 𝑋 is circuit input

• Error distance (ED): Applicable to arithmetic circuits

– Maximal ED (MaxED): max
𝑋

| Ԧ𝑓 𝑋 − Ԧ𝑓′(𝑋)|

– Mean ED (MED): 𝐸 Ԧ𝑓 𝑋 − Ԧ𝑓′ 𝑋
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Error Metrics

• Normalized mean error distance (NMED)

𝐸 Ԧ𝑓 𝑋 − Ԧ𝑓′ 𝑋

2𝑂 − 1
– 𝑂 is the number of output bits

• Mean relative error distance (MRED)

𝐸
Ԧ𝑓 𝑋 − Ԧ𝑓′ 𝑋

Ԧ𝑓 𝑋
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Iterative Framework

• Local approximate changes (LACs) + Iterative improvement
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Iterative Framework: Key Problems

• Which types of LACs?

• For all the LACs, which of them should be considered?

• From those considered, which of them should be finally selected?
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Classification

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

21
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Constant Replacement

24

Replace with 1

Shin & Gupta, “A new circuit simplification method for error tolerant applications,” DATE’11

• Which types of LACs?

– Constant replacement



Constant Replacement
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Replace with 1

• For all the LACs, which of them should be considered?

– Consider all the wires, and for each wire, consider both choices (0/1)

• From those considered, which of them should be finally selected?

– Select the one with the largest 𝐴𝑟𝑒𝑎𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛/(𝐸𝑅 ∗ 𝑀𝑎𝑥𝐸𝐷)



Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

• Constant replacement-based LAC

• Signal substitution-based LAC
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SASIMI: Signal Substitution
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S

T

S

T

Venkataramani et al., “Substitute-and-Simplify: A Unified Design Paradigm for Approximate and 

Quality Configurable Circuits,” DATE’13

• Which types of LACs?

– Signal substitution

– Basic idea: find two signals not identical but very close

S: 0010001101

T: 0011001101



SASIMI: Signal Substitution
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S

T

S

T

• For all the LACs, which of them should be considered?

– Consider all the signal pairs (𝑆𝑢𝑏𝑆𝑖𝑔𝑛𝑎𝑙, 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑖𝑔𝑛𝑎𝑙) and 

(𝑆𝑢𝑏𝑆𝑖𝑔𝑛𝑎𝑙, 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑖𝑔𝑛𝑎𝑙)

• From those considered, which of them should be finally selected?

– Select the one with the largest 

(𝛼 ∙ 𝐴𝑟𝑒𝑎𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 1 − 𝛼 𝐷𝑒𝑙𝑎𝑦𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)/(𝑃𝑑𝑖𝑓𝑓(1 − 𝑃𝑑𝑖𝑓𝑓))

– 𝑃𝑑𝑖𝑓𝑓 = Pr(𝑆𝑢𝑏𝑆𝑖𝑔𝑛𝑎𝑙 ≠ 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑖𝑔𝑛𝑎𝑙)



Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

• Constant replacement-based LAC

• Signal substitution-based LAC

• Resubstitution-based LAC

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

29



ALSRAC: Resubstitution

30

Can we resubstitute v as a 

function of u and z? NO!

• abcd = 0001 ➔ uz = 10, v =0

• abcd = 0010 ➔ uz = 10, v =1

But, we can approximately 

resubstitute v as a function 

of z and u! 

Meng, Qian & Mishchenko, “ALSRAC: approximate logic synthesis by resubstitution 

with approximate care set,” DAC’20

Code: https://github.com/SJTU-ECTL/ALSRAC 

https://github.com/SJTU-ECTL/ALSRAC


ALSRAC Methodology

• Step 1: Use random logic simulation to generate approximate care set

31

• Randomly select 5 input patterns (in red) 

and simulate the circuit

• Only care the patterns appeared in 

simulation

• Other patterns are treated as don’t-cares



ALSRAC Methodology

• Step 2: Build truth table and check feasibility

32

• No conflicts in the truth table (each 𝑢𝑧 pattern 

corresponds to only one value of ො𝑣)

• Truth table of approximate function: ො𝑣 = ത𝑢 + ҧ𝑧



Which LACs to Consider and Which to Select?

• 𝑢 and 𝑧 are called divisors of 𝑣

• LACs: (𝑣, 𝐷𝑖𝑣𝑖𝑠𝑜𝑟𝑆𝑒𝑡), e.g., (𝑣, {𝑢, 𝑧})

• For each node 𝑣, consider the following 

divisors

– Remove a fanin of 𝑣, i.e., 𝑧 , {𝑤}

– Replace a fanin of 𝑣 by another node in 𝑣’s TFI 

cone, i.e., 

𝑧, 𝑎 , 𝑧, 𝑏 , 𝑧, 𝑐 , 𝑧, 𝑑 , 𝑧, 𝑥 , 𝑧, 𝑦 , 𝑧, 𝑢 ,
𝑤, 𝑎 , 𝑤, 𝑏 , 𝑤, 𝑐 , 𝑤, 𝑑 , 𝑤, 𝑥 , 𝑤, 𝑦 , {𝑤, 𝑢}
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• Which LACs to consider?

• Which LAC(s) to select?

• Select the one with the smallest error



Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

• Approximate node simplification

• Delay-driven ALS

– Consider a random subset + select one
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Outline
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Approximate Node Simplification

36

𝑦 = 𝑥 + 𝑐

𝑥 = 𝑎𝑏
𝑎

𝑏

𝑐
𝑦

𝑥

Primary

Inputs

Primary

Outputs

Internal

Nodes

𝑥 and 𝑦 are Boolean function.

• Work on Boolean logic network model

• A direct acyclic graph. Each node is a Boolean function

• Boolean function could be in either sum-of-product (SOP) form 

or factored form

• What to optimize? Total literal count

#Literals = 5

Wu & Qian, “An efficient method for 

multi-level approximate logic synthesis 

under error rate constraint,” DAC’16



Approximate Node Simplification

• Work on factored-form expression of a node

• Simplify it by removing some literals

• An approximation; can cause error

• Call the result approximate simplified expression (ASE)

37

𝑛 = (𝑎 + 𝑏)(𝑐 + 𝑑)

remove 1 literal

𝑛 = 𝑎(𝑐 + 𝑑) 𝑛 = 𝑏(𝑐 + 𝑑) 𝑛 = 𝑎 + 𝑏 𝑐 𝑛 = 𝑎 + 𝑏 𝑑

• Each node has multiple 

ASEs

• Consider all the nodes 

and all their ASEs



Selection Problem: Multiple Selection

38

f

n2=n1i3

n1=i1i2 n3=n2i0

i0

i1

i2

i3

• Questions:

1. Which set of nodes should we choose to make change?

2. For these chosen nodes, which of their ASEs should we pick?

• Proposed solution: model this as a 0/1 multi-state knapsack 

problem



Mapping to 0/1 Multi-state Knapsack Problem

40

➢ A node → an candidate item

➢ An ASE of a node → a state of a item

➢ Error rate of an ASE → weight

➢ Number of saved literals → value

➢ Error rate margin → capacity of knapsack

• Multi-state knapsack problem can be solved by extending the classical 

dynamic programming solution to basic 0/1 knapsack problem

• Flow: after each round of multi-selection, evaluate actual error rate, 

update error rate margin and do another round until margin used up



Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

• Approximate node simplification

• Delay-driven ALS

– Consider a random subset + select one

41



Delay Optimization

• Area-Driven ALS Is Not Good in Reducing Delay

– Applying local approximate changes (LACs) on non-critical gates

– Applying LAC on a single critical gate is not effective, since there 

exist multiple critical paths

42
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Zhou et al., “DALS: delay-driven approximate logic synthesis,” ICCAD’18



Delay Optimization: Basic Idea

43

Constant 

Replacement 0

Obtain critical graph

Find a critical cut and 

a set of LACs with 

minimum error impact

Apply the best choice (cut + LACs) 

to get new approximate circuit

Until error bound

is reached ?

• Apply depth-reduction local approximate changes 

(LACs) to critical cut of the critical graph

• Main flow



Delay Optimization: Finding Optimized LACs

• Focus on the min-error 

LAC for each node

44
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• Which cut to select?

– Solve a network flow problem

Errors

Errors



Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

• Evolutionary algorithm-based method

• Random choice and probabilistic acceptance-based method
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Outline
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• Evolutionary algorithm-based method

• Random choice and probabilistic acceptance-based method
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Evolutionary Algorithm-based Method 

• Genetic algorithm: mimic the process of natural selection

47

Each approx. 
circuit is an 
individual

Select circuits 
by their errors

Generate 
new circuits



Evolutionary Algorithm-based Method 

• Represent circuit (individual) as a chromosome

– Assume circuit has 𝑛𝑖 primary inputs and 𝑛𝑜 primary outputs

– A candidate circuit is modeled as a gate array of 𝑛𝑐 internal nodes

– Primary inputs and nodes are labeled as 0,1,… , 𝑛𝑖 − 1, 𝑛𝑖 , 𝑛𝑖 + 1,… , 𝑛𝑖 +
𝑛𝑐 − 1

– Encode each node as (𝑓𝑎𝑛𝑖𝑛1𝐼𝐷, 𝑓𝑎𝑛𝑖𝑛2𝐼𝐷, 𝑔𝑎𝑡𝑒𝑇𝑦𝑝𝑒𝐼𝐷)

– Last part contains 𝑛𝑜 values specifying the outputs

48

Chromosome: (1, 3, 0); (0, 2, 0); (1, 2, 0); (0, 1, 0); (7, 6, 1); (8, 8, 1); [5, 8, 4, ‘0’]

AND: 0

OR: 1

Vasicek & Sekanina, “Evolutionary approach to approximate digital circuits design,” Trans. Evo. Compt.’15



Evolutionary Algorithm-based Method 

• Step 1: create initial population of size 1 + 𝜆

• Step 2: calculate MED for each candidate circuit

• Step 3: select the candidate circuit with the lowest MED as the parent

• Step 4: applying point mutation to generate 𝜆 offspring individuals from 

the parent

• Step 5: go to Step 2 unless termination condition is satisfied

49

Chromosome: (1, 3, 0); (0, 2, 0); (1, 2, 0); (0, 1, 0); (7, 6, 1); (8, 8, 1); [5, 8, 4, ‘0’]



Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

• Evolutionary algorithm-based method

• Random choice and probabilistic acceptance-based method
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Random Choice and Probabilistic Acceptance

• LACs

• Which LACs to consider? Randomly choose one

• Should it be applied? (i.e., selection criterion)

– Calculate quality metric: 𝑄 = 𝛼 ∙ 𝐴𝑟𝑒𝑎𝑚 + 𝛽 ∙ 𝐸𝑟𝑟𝑜𝑟𝑀𝑒𝑡𝑟𝑖𝑐

– Accept a move stochastically

• If the move improves the quality, accept the move

• Otherwise, accept with probability 𝑒−𝛾(𝑄𝑛𝑒𝑤/𝑄𝑜𝑙𝑑)

51

increase area

Liu & Zhang, “Statistically certified approximate logic synthesis,” ICCAD’17

Traditional 

logic 

synthesis
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Edge Detection Application

• Sobel edge detection

• Approximate adder generated by approximate logic synthesis [Meng+, DAC’20]
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Input image Output by 16-bit

accurate adder

Output by synthesized

approximate adder

Area (um2) 82.73 56.9

Delay (ns) 5 2.8

Area x Delay 413 159 (2.6X)

𝑂𝑥 =
−1 0 1
−2 0 2
−1 0 1

⊛ 𝐼𝑥, 𝑂𝑦 =
−1 −2 −1
0 0 0
1 2 1
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Deep Neural Networks (DNNs)

56

• Many arithmetic operations



Low-Power DNN Accelerator by Approximate Logic Synthesis

57

Approximate

Multiplier
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Network
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Logic

Synthesis

Input

Distribution
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Profile
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Fits better with the 

neural network

[Qian+, ISCAS’21]



Experimental Results

• LeNet-5 + MNIST dataset

• Synthesize approximate multipliers [Meng+, DAC’20]

• Loop has 5 iterations
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Circuit type error 

bound

area delay accurac

y

Accurate 8-bit multiplier - 1326 27.1 99.00%

Approximate multiplier 1 0.001 966 27 98.86%

Approximate multiplier 2 0.003 786 26 98.74%

Approximate multiplier 3 0.006 202 18.1 98.67%

Approximate multiplier 4 0.012 73 10.7 98.44%

Approximate multiplier 5 0.024 56 6.7 97.86%

2-bit rounded multiplier - 72 7.7 97.52%

Final design

(Area 4.2% of

the accurate

multiplier)
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Conclusion

• Approximate computing

– Targeting at error-tolerant application

– Trading accuracy for area/delay/power

• Logic synthesis for approximate circuits

– Consider a deterministic subset of LACs + select one

– Consider a deterministic subset of LACs + select multiple

– Consider a random subset of LACs + select one

• Applications of approximate circuits

– Image Processing

– Deep Neural Networks

60
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