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Moore's Law
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Exploration in Post-Moore Era
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« Background on Approximate Computing



Our World Is Approxmate

Our World Is Approximate



®

Error Tolerance E.g. 1. No Golden Answer

74 Please introduce sustainable computing in one sentence.

ChatGPT

Sustainable computing focuses on designing and implementing computing systems that
minimize energy consumption and environmental impact while maintaining performance ANSWER 1

and efficiency.

Sustainable computing involves designing, using, and disposing of computer systems and
ANSWER 2

related technology in ways that minimize environmental impact, reduce energy

consumption, and promote long-term ecological balance.



Error Tolerance 2: No Need Exact Numerical Values

D =

FP16 or FP32 EP16
INT32 CINT8 or UINT8D INT8 or UINT8

Mixed precision architecture in NVIDIA GPU



No Need Exact Numerical Values

* Deep neural network classifier

Similarity (probability)
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Error Tolerance 3: Limitation of Human Perception

Picture without noise Picture with noise

Noise doesn’t affect recognition of the sportsman [Han+, 13



Approximate Computing

4 Deliberately introduce small errors = reduce power consumption

 Error-tolerant apps: system-level functions not affected by small errors
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Approximate Computing

« Sacrifice accuracy for performance and energy improvement

Algorithm
Accurate Approximate
omero _coneuny
Architecture Small
0 error . _error
Error Energy Error Energy Error Energy

O A
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Approximate Circuit
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New Design Space with Approx. Computing!

« Opportunities: Large design space
* Challenges: how to find low-power designs efficiently?

Power Error

Different designs

|

Optimal tradeoff Power
Delay
2D design space 3D design space
Traditional computing Approximate computing
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Approximate Logic Synthesis

B1BO
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(E.g., error rate < 1%) 15




Error rate (ER): Pr(f()_f) * f’()?))
— f is circuit function, X is circuit input
« Error distance (ED): Applicable to arithmetic circuits
— Maximal ED (MaxED): max F(X) - (X))
— Mean ED (MED): E[|f(X) - ' (X)|]
B1BO

Al1AOQ 00 | 01 11 10
00 | 0000 | 0000 | 0000 | 0000 0011 ER = 2/16

01 | 0000|0001 | 0011 {0010 MaxED = 2
7 0111 \ED = 3/16

11 10000 0011 | Goor)FTiio |

10 1000 1010 | 1110 | 1100
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 Normalized mean error distance (NMED)
Ellf(x) - f'(X)I]
20 —1
— 0 Is the number of output bits

 Mean relative error distance (MRED)
F(X) = /(X))
f(X)

E
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* Logic Synthesis for Approximate Circuits

18



Iterative Framework

* Local approximate changes (LACs) + Iterative improvement




lterative Framework: Key Problems

« Which types of LACs?
« For all the LACs, which of them should be considered?
* From those considered, which of them should be finally selected?

20



Classification

« Based on which LACs to consider and which to select
— Consider a deterministic subset + select one
— Consider a deterministic subset + select multiple
— Consider a random subset + select one

21



« Based on which LACs to consider and which to select
— Consider a deterministic subset + select one
« Constant replacement-based LAC
« Signal substitution-based LAC
« Resubstitution-based LAC

22



« Based on which LACs to consider and which to select
— Consider a deterministic subset + select one
« Constant replacement-based LAC

23



Constant Replacement

* Which types of LACs? —}
— Constant replacement _ M ) o1
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Shin & Gupta, “A new circuit simplification method for error tolerant applications,” DATE’11 24




Constant Replacement

« For all the LACs, which of them should be considered?
— Consider all the wires, and for each wire, consider both choices (0/1)
* From those considered, which of them should be finally selected?
— Select the one with the largest AreaReduction/(ER * MaxED)

—
— —ZDGf\ADOE
Q

D” Replace with 1
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« Based on which LACs to consider and which to select
— Consider a deterministic subset + select one

« Signal substitution-based LAC

26



SASIMI: Signal Substitution

* Which types of LACs?
— Signal substitution
— Basic idea: find two signals not identical but very close

S: 0010001101
T: 0011001101

Prococococqeocopme

Venkataramani et al., “Substitute-and-Simplify: A Unified Design Paradigm for Approximate and
Quality Configurable Circuits,” DATE’13 27



SASIMI: Signal Substitution

 For all the LACs, which of them should be considered?

— Consider all the signal pairs (SubSignal, TargetSignal) and
(SubSignal, TargetSignal)

* From those considered, which of them should be finally selected?

— Select the one with the largest
(a - AreaReduction + (1 — a)DelayReduction)/(Pgirs (1 — Pgifs))

28



« Based on which LACs to consider and which to select
— Consider a deterministic subset + select one

 Resubstitution-based LAC

29



ALSRAC: Resubstitution

Can we resubstitute v as a
ﬁl_f@ function of u and z? NO!

e abcd=0001=» uz=10,v=0
e abcd=0010=>» uz=10,v=1

But, we can approximately

Dll resubstitute v as a function
of z and ul!

Meng, Qian & Mishchenko, “ALSRAC: approximate logic synthesis by resubstitution
with approximate care set,” DAC’20
Code: https://github.com/SITU-ECTL/ALSRAC 30



https://github.com/SJTU-ECTL/ALSRAC

ALSRAC Methodology

« Step 1: Use random logic simulation to generate approximate care set

abcd

c

<

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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e e O e it e O e e O O

QO b it it pd e O O = = OO OO | N
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Randomly select 5 input patterns (in red)
and simulate the circuit

Only care the patterns appeared in
simulation

Other patterns are treated as don’t-cares
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ALSRAC Methodology

« Step 2: Build truth table and check feasibility

abcd

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

c
N
<

uz 00 Ol 10 11
v 1 0 0 —
* No conflicts in the truth table (each uz pattern
corresponds to only one value of 7)

« Truth table of approximate function: ¥

u+z

OC O OO OO OO OOOO k= = k= = | X
-0 00000 MMROOOOO0OO|IK
o e O e O e O O
OCQ O M MFHMMEMHMOOMRMEKOOOO
OO MHOOHHMFEHOOMRMEMOOMRM|Z
COO0OOHH MM OOOOOOOOOO =+
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Which LACs to Consider and Which to Select?

* Which LACs to consider?
 u and z are called divisors of v
 LACs: (v, DivisorSet), e.g., (v,{u, z})
* For each node v, consider the following
@i divisors
— Remove a fanin of v, i.e., {z}, {w}

— Replace a fanin of v by another node in v’s TFI
cone, i.e.,

Z,a},12, b}, 1z, ¢}, 1z, d}, 2, x},12, ¥y}, 1z, u},
w, aj, iw, b}, {w, c}, tw, d}, tw, x},iw, y}, {w, u}

* Which LAC(s) to select?
 Select the one with the smallest error

33



» Based on which LACs to consider and which to select
— Consider a deterministic subset + select multiple

« Approximate node simplification
« Delay-driven ALS

34



« Based on which LACs to consider and which to select

— Consider a deterministic subset + select multiple
« Approximate node simplification

35



Approximate Node Simplification

« Work on Boolean logic network model
« Adirect acyclic graph. Each node is a Boolean function

* Boolean function could be in either sum-of-product (SOP) form
or factored form

« What to optimize? Total literal count

#Literals =5

Primary Primary

Wu & Qian, “An efficient method for InpUtS OUtpUtS

multi-level approximate logic synthesis x and y are Boolean function.
under error rate constraint,” DAC’16 36




Approximate Node Simplification

« Work on factored-form expression of a node
« Simplify it by removing some literals
* An approximation; can cause error
« Call the result approximate simplified expression (ASE)

« Each node has multiple
ASESs

« Consider all the nodes
and all their ASEs

n=(a+b)(c+d

remove 1 Ilteral

37



Selection Problem: Multiple Selection

e Questions:
1. Which set of nodes should we choose to make change?
2. For these chosen nodes, which of their ASEs should we pick?

* Proposed solution: model this as a 0/1 multi-state knapsack
problem

38



Mapping to 0/1 Multi-state Knapsack Problem

» A node - an candidate item m ? .
» An ASE of a node - a state of a item @ enpd
» Error rate of an ASE - weight <«

» Number of saved literals - value a,)
» Error rate margin = capacity of knapsack

« Multi-state knapsack problem can be solved by extending the classical
dynamic programming solution to basic 0/1 knapsack problem

« Flow: after each round of multi-selection, evaluate actual error rate,
update error rate margin and do another round until margin used up

40



« Based on which LACs to consider and which to select

— Consider a deterministic subset + select multiple

« Delay-driven ALS

41



Delay Optimization

* Area-Driven ALS Is Not Good in Reducing Delay
— Applying local approximate changes (LACs) on non-critical gates

— Applying LAC on a single critical gate is not effective, since there
exist multiple critical paths
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Zhou et al., “DALS: delay-driven approximate logic synthesis,” I[CCAD’18 42



Delay Optimization: Basic Idea

* Apply depth-reduction local approximate changes
(LACs) to critical cut of the critical graph

Constant
Replacement O ::

Find a critical cut and
a set of LACs with
minimum error im

« Main flow

Obtain critical graph

Until error bounc
IS reacheg

Apply the best choice (cut + LACSs)
to get new approximate circuit

f?

43



Delay Optimization: Finding Optimized LACs

 Focus on the min-error
LAC for each node

 \Which cut to select?

— Solve a network flow problem
Errors

N

|
Critical Cut

Errors

L1



« Based on which LACs to consider and which to select

— Consider a random subset + select one
 Evolutionary algorithm-based method
« Random choice and probabilistic acceptance-based method

45



« Based on which LACs to consider and which to select

— Consider a random subset + select one
 Evolutionary algorithm-based method

46



Evolutionary Algorithm-based Method

« Genetic algorithm: mimic the process of natural selection

&

new generation

/ N Ll b Ll
// \\\ T T
/
@Vl Wl m™
/ : ’t' l‘W‘} ‘u-ut’fn Each approx.
mu ? ion evaluatibnor —  circuit is an
Gener_ate_ l each individual individual
New CIrcuits \ "
\
N VO ga
” a . n 7 N\ v S i ]
. v v elect circuits
reproduction selection \by their errors
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Evolutionary Algorithm-based Method

* Represent circuit (individual) as a chromosome
— Assume circuit has n; primary inputs and n, primary outputs
— A candidate circuit is modeled as a gate array of n,. internal nodes
— Primary inputs and nodes are labeled as 0,1, ...,n; — 1,n;,n; + 1, ...,n; +
n.—1
— Encode each node as (faninliID, fanin2ID, gateTypelD)
— Last part contains n, values specifying the outputs

0 5

G=—I 1 pl .
L n 1 : : i— L =- AND:O
= ey eber pbebbe s s |
o =3

Chromosome: (1, 3, 0); (0, 2, 0); (1, 2, 0); (0, 1, 0); (7, 6, 1); (8, 8, 1); [5, 8, 4, °0’]

Vasicek & Sekanina, “Evolutionary approach to approximate digital circuits design,” Trans. Evo. Compt. 15 48



Evolutionary Algorithm-based Method

Ste
Ste
Ste

Ste
the

0 1: create initial population of size (1 + 1)

D 2: ca
N 3: se

0 4: ap
parent

culate MED for each candidate circuit
ect the candidate circuit with the lowest MED as the parent

plying point mutation to generate A offspring individuals from

Step 5: go to Step 2 unless termination condition is satisfied

Chromosome: (1, 3, 0); (0, 2, 0); (1, 2, 0); (0, 1, 0); (7, 6, 1); (8, 8, 1); [5, 8, 4, °0’]
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« Based on which LACs to consider and which to select

— Consider a random subset + select one

« Random choice and probabilistic acceptance-based method

50



Random Choice and Probabillistic Acceptance

| : _ Traditional
_ l _ 1 I ' . == logic
D T T T synthesis

reduce flip N add /

___________

* Which LACs to consider? Randomly choose one

« Should it be applied? (i.e., selection criterion)
— Calculate quality metric: Q = a - Area,,, + - ErrorMetric
— Accept a move stochastically
« |If the move improves the guality, accept the move
. Otherwise, accept with probability e =¥ (@new/Qota)

Liu & Zhang, “Statistically certified approximate logic synthesis,” ICCAD’17 o1



« Applications of Approximate Circuits
— Image Processing
— Deep Neural Networks

52



« Applications of Approximate Circuits
— Image Processing

53



Edge Detection Application

-1 0 1 -1 -2 -1
« Sobel edge detection o0,=|-2 o0 2]®Ix,0y= 0 0 0]®1y
-1 0 1 1 2 1

« Approximate adder generated by approximate logic synthesis [Meng+, DAC’'20]

T‘ synthesized

| Out by 16-bit Otpu

Input image )
accurate adder approximate adder
Area (um?) 82.73 56.9
Delay (ns) 5 2.8
Area x Delay 413 159 (2.6X) 54




« Applications of Approximate Circuits

— Deep Neural Networks

55



Deep Neural Networks (DNNSs)

pooled Fully-connected 1

feature maps pooled  featuremaps  feature maps
feature maps |

-
I,

r _

plylx)

00000000

Outputs
Input

Convolutional Pooling 1 Convolutional
layer 1 layer 2

Pooling 2

* Many arithmetic operations

56



Low-Power DNN Accelerator by Approximate Logic Synthesis

Fits better with the

. neural network
Approximate

Multiplier

Synthes? Train
App[gX|ir(r:1ate « Input « Neural
gic Distribution Network
Synthesis .
Profile

ian+, ISCAS’21
[Qian+, ISCAS’21] 57



Experimental Results

« LeNet-5 + MNIST dataset
« Synthesize approximate multipliers [Meng+, DAC'20]
« Loop has 5 iterations

Circuit type error area | delay | accurac
bound

Accurate 8-bit multiplier 1326 27.1 99. OO%
Approximate multiplier 1 0.001 966 27 98.86%
Approximate multiplier 2 0.003 786 26  98.74%
Approximate multiplier 3 0.006 202 18.1 98.67%
Final design Approximate multiplier 4 0.012 73 10.7 98.44%
(Area 4.2% of ——  Approximate multiplier 5 0.024 56 6.7 97.86%

the accurate

i o ) .
multiplier) 2-bit rounded multiplier 72 7.7 97.52%

58



« Conclusion

59



Conclusion

Error

« Approximate computing
— Targeting at error-tolerant application
— Trading accuracy for area/delay/power
* Logic synthesis for approximate circuits
— Consider a deterministic subset of LACs + select one
— Consider a deterministic subset of LACs + select multiple
— Consider a random subset of LACs + select one
« Applications of approximate circuits
— Image Processing
— Deep Neural Networks

Power

60
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