=PrL

Logic Synthesis for
Approximate Computing Circuits

Chang Meng, Postdoc
November 19, 2024

Moore's Law

Log-
Scale
data

10°
10°

10°

1 "‘ﬁ Il I I D S S S
- ﬂii: Transistors
g A A (thousands)
N S E R Y U
Y Yalie .
IR SN U S 7L r o Single-Thread _ _ _

erformance

R e (SpecINT x 10°)
requency (MBzl
I — - —3‘25: N S
: : ; : Number of
R s B v T e 3 Logical Cores
i v coy . BN
—-s---t ------------ I+ ------- B-00- MO CUND WINOND #0 e
| | | |
1970 1980 1990 2000 2010 2020

Year

[Semianalysis, 2023]

Exploration in Post-Moore Era

US DARPA Joint University Microelectronics Program (JUMP)

- : levice
Approximate Architecture |
Computing
@
@
In-memory Post-CMOS
Computing computing Devices
Accelerators Diagrams i 2
Multicores/GPUs off 3T ,;;J
input Ey.:!u,-sumo C ‘;‘g ,"_:-‘:
0 12 b A il i =
Baw
O==

Background on Approximate Computing
Logic Synthesis for Approximate Circuits
Applications of Approximate Circuits
Conclusion

« Background on Approximate Computing

Our World Is Approxmate

Our World Is Approximate

®

Error Tolerance E.g. 1. No Golden Answer

74 Please introduce sustainable computing in one sentence.

ChatGPT

Sustainable computing focuses on designing and implementing computing systems that
minimize energy consumption and environmental impact while maintaining performance ANSWER 1

and efficiency.

Sustainable computing involves designing, using, and disposing of computer systems and
ANSWER 2

related technology in ways that minimize environmental impact, reduce energy

consumption, and promote long-term ecological balance.

Error Tolerance 2: No Need Exact Numerical Values

D =

FP16 or FP32 EP16
INT32 CINT8 or UINT8D INT8 or UINT8

Mixed precision architecture in NVIDIA GPU

No Need Exact Numerical Values

* Deep neural network classifier

Similarity (probability)
0.671 v

g / 8 8659~ oo

0O 0.106

- ?1 0.031

O 0.093

Error Tolerance 3: Limitation of Human Perception

Picture without noise Picture with noise

Noise doesn’t affect recognition of the sportsman [Han+, 13

Approximate Computing

4 Deliberately introduce small errors = reduce power consumption

 Error-tolerant apps: system-level functions not affected by small errors

Chject done Q=
Naturalz: o8 8=,)

. . S (O O "™ e mowe ™ § & oge
ItIStlca|§§ 3 2 ynderstand " <Y 8 "7
‘d-tw»r--»(f)g.Eé c*% inqustic -+ 3 PFOCESSING
E{)ﬁ”mg'sé!% €language Machine ,
S ke !

nding

ians =€}

Language processing

1 Reduce power for

loT system Embedded device

11

Approximate Computing

« Sacrifice accuracy for performance and energy improvement

Algorithm
Accurate Approximate
omero _coneuny
Architecture Small
0 error . _error
Error Energy Error Energy Error Energy

O A

12

Approximate Circuit

b, -
- —0 -

dTrade off accuracy 2 bo-:)_ '
& ;
reduce power, delay & area :m_ M cireuit
plier a7 —
dKarnaugh map for a 2x2 multiplier a- T out
/L/
S o,
b. b Fewer & simpler gates
170 l = smaller area &
a,a 00 | o1 11 10 lower power
00 | 0000 [0000 | 0000 | 0000 i) out,
bO_ .
01 | 0000|0001 | 0011 0010 .14) Approximate
11 | 0000 | 0011 [(1001)| 0110 N o Circut
aO_ /
10 0000|0010 0110 |o100| E'TOrrate
=1/16 by ,
[Kulkarni+, 11] a—- Out,

13

New Design Space with Approx. Computing!

« Opportunities: Large design space
* Challenges: how to find low-power designs efficiently?

Power Error

Different designs

|

Optimal tradeoff Power
Delay
2D design space 3D design space
Traditional computing Approximate computing

14

Approximate Logic Synthesis

B1BO

Al1AOQ 00 | 01| 11 | 10
00 | 000 | 000 | 000 | 000 What's the

01 000 | 001 011 | 010 ‘ optimal way to

' ?
11 | 000 | 011 [1001 | 110 Introduce error

10 | 000 | 010 | 110 | 100

Original
Design

Logic _ Approximate
synthesis
Error = algorithm
Specification <

(E.g., error rate < 1%) 15

Error rate (ER): Pr(f()_f) * f’()?))
— f is circuit function, X is circuit input
« Error distance (ED): Applicable to arithmetic circuits
— Maximal ED (MaxED): max F(X) - (X))
— Mean ED (MED): E[|f(X) - ' (X)|]
B1BO

Al1AOQ 00 | 01 11 10
00 | 0000 | 0000 | 0000 | 0000 0011 ER = 2/16

01 | 0000|0001 | 0011 {0010 MaxED = 2
7 0111 \ED = 3/16

11 10000 0011 | Goor)FTiio |

10 1000 1010 | 1110 | 1100

16

 Normalized mean error distance (NMED)
Ellf(x) - f'(X)I]
20 —1
— 0 Is the number of output bits

 Mean relative error distance (MRED)
F(X) = /(X))
f(X)

E

17

* Logic Synthesis for Approximate Circuits

18

Iterative Framework

* Local approximate changes (LACs) + Iterative improvement

lterative Framework: Key Problems

« Which types of LACs?
« For all the LACs, which of them should be considered?
* From those considered, which of them should be finally selected?

20

Classification

« Based on which LACs to consider and which to select
— Consider a deterministic subset + select one
— Consider a deterministic subset + select multiple
— Consider a random subset + select one

21

« Based on which LACs to consider and which to select
— Consider a deterministic subset + select one
« Constant replacement-based LAC
« Signal substitution-based LAC
« Resubstitution-based LAC

22

« Based on which LACs to consider and which to select
— Consider a deterministic subset + select one
« Constant replacement-based LAC

23

Constant Replacement

* Which types of LACs? —}
— Constant replacement _ M) o1

) D Ds
—_/ | " \ D 02
Replace with 1

@ D

=D
| @H’” _

Ry

T a0
> —Ja>
Static 0 —02—

Shin & Gupta, “A new circuit simplification method for error tolerant applications,” DATE’11 24

Constant Replacement

« For all the LACs, which of them should be considered?
— Consider all the wires, and for each wire, consider both choices (0/1)
* From those considered, which of them should be finally selected?
— Select the one with the largest AreaReduction/(ER * MaxED)

—
— —ZDGf\ADOE
Q

D” Replace with 1

25

« Based on which LACs to consider and which to select
— Consider a deterministic subset + select one

« Signal substitution-based LAC

26

SASIMI: Signal Substitution

* Which types of LACs?
— Signal substitution
— Basic idea: find two signals not identical but very close

S: 0010001101
T: 0011001101

Prococococqeocopme

Venkataramani et al., “Substitute-and-Simplify: A Unified Design Paradigm for Approximate and
Quality Configurable Circuits,” DATE’13 27

SASIMI: Signal Substitution

 For all the LACs, which of them should be considered?

— Consider all the signal pairs (SubSignal, TargetSignal) and
(SubSignal, TargetSignal)

* From those considered, which of them should be finally selected?

— Select the one with the largest
(a - AreaReduction + (1 — a)DelayReduction)/(Pgirs (1 — Pgifs))

28

« Based on which LACs to consider and which to select
— Consider a deterministic subset + select one

 Resubstitution-based LAC

29

ALSRAC: Resubstitution

Can we resubstitute v as a
ﬁl_f@ function of u and z? NO!

e abcd=0001=» uz=10,v=0
e abcd=0010=>» uz=10,v=1

But, we can approximately

Dll resubstitute v as a function
of z and ul!

Meng, Qian & Mishchenko, “ALSRAC: approximate logic synthesis by resubstitution
with approximate care set,” DAC’20
Code: https://github.com/SITU-ECTL/ALSRAC 30

https://github.com/SJTU-ECTL/ALSRAC

ALSRAC Methodology

« Step 1: Use random logic simulation to generate approximate care set

abcd

c

<

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OCO OO0 O OO OOOO M = = | X

= _ O 00000 MMROOOOO0OO0|IK

e e O e it e O e e O O

QO b it it pd e O O = = OO OO | N

OCORHOOFHMFHOORMEFOORM/|S

CO OO FOOOOOOOOOO =M

Randomly select 5 input patterns (in red)
and simulate the circuit

Only care the patterns appeared in
simulation

Other patterns are treated as don’t-cares

31

ALSRAC Methodology

« Step 2: Build truth table and check feasibility

abcd

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

c
N
<

uz 00 Ol 10 11
v 1 0 0 —
* No conflicts in the truth table (each uz pattern
corresponds to only one value of 7)

« Truth table of approximate function: ¥

u+z

OC O OO OO OO OOOO k= = k= = | X
-0 00000 MMROOOOO0OO|IK
o e O e O e O O
OCQ O M MFHMMEMHMOOMRMEKOOOO
OO MHOOHHMFEHOOMRMEMOOMRM|Z
COO0OOHH MM OOOOOOOOOO =+

32

Which LACs to Consider and Which to Select?

* Which LACs to consider?
 u and z are called divisors of v
 LACs: (v, DivisorSet), e.g., (v,{u, z})
* For each node v, consider the following
@i divisors
— Remove a fanin of v, i.e., {z}, {w}

— Replace a fanin of v by another node in v’s TFI
cone, i.e.,

Z,a},12, b}, 1z, ¢}, 1z, d}, 2, x},12, ¥y}, 1z, u},
w, aj, iw, b}, {w, c}, tw, d}, tw, x},iw, y}, {w, u}

* Which LAC(s) to select?
 Select the one with the smallest error

33

» Based on which LACs to consider and which to select
— Consider a deterministic subset + select multiple

« Approximate node simplification
« Delay-driven ALS

34

« Based on which LACs to consider and which to select

— Consider a deterministic subset + select multiple
« Approximate node simplification

35

Approximate Node Simplification

« Work on Boolean logic network model
« Adirect acyclic graph. Each node is a Boolean function

* Boolean function could be in either sum-of-product (SOP) form
or factored form

« What to optimize? Total literal count

#Literals =5

Primary Primary

Wu & Qian, “An efficient method for InpUtS OUtpUtS

multi-level approximate logic synthesis x and y are Boolean function.
under error rate constraint,” DAC’16 36

Approximate Node Simplification

« Work on factored-form expression of a node
« Simplify it by removing some literals
* An approximation; can cause error
« Call the result approximate simplified expression (ASE)

« Each node has multiple
ASESs

« Consider all the nodes
and all their ASEs

n=(a+b)(c+d

remove 1 Ilteral

37

Selection Problem: Multiple Selection

e Questions:
1. Which set of nodes should we choose to make change?
2. For these chosen nodes, which of their ASEs should we pick?

* Proposed solution: model this as a 0/1 multi-state knapsack
problem

38

Mapping to 0/1 Multi-state Knapsack Problem

» A node - an candidate item m ? .
» An ASE of a node - a state of a item @ enpd
» Error rate of an ASE - weight <«

» Number of saved literals - value a,)
» Error rate margin = capacity of knapsack

« Multi-state knapsack problem can be solved by extending the classical
dynamic programming solution to basic 0/1 knapsack problem

« Flow: after each round of multi-selection, evaluate actual error rate,
update error rate margin and do another round until margin used up

40

« Based on which LACs to consider and which to select

— Consider a deterministic subset + select multiple

« Delay-driven ALS

41

Delay Optimization

* Area-Driven ALS Is Not Good in Reducing Delay
— Applying local approximate changes (LACs) on non-critical gates

— Applying LAC on a single critical gate is not effective, since there
exist multiple critical paths

— — —

Pls

1
|
|
|
|
|
|
|
|
|
|

F————————————————————‘l

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

Zhou et al., “DALS: delay-driven approximate logic synthesis,” I[CCAD’18 42

Delay Optimization: Basic Idea

* Apply depth-reduction local approximate changes
(LACs) to critical cut of the critical graph

Constant
Replacement O ::

Find a critical cut and
a set of LACs with
minimum error im

« Main flow

Obtain critical graph

Until error bounc
IS reacheg

Apply the best choice (cut + LACSs)
to get new approximate circuit

f?

43

Delay Optimization: Finding Optimized LACs

 Focus on the min-error
LAC for each node

 \Which cut to select?

— Solve a network flow problem
Errors

N

|
Critical Cut

Errors

L1

« Based on which LACs to consider and which to select

— Consider a random subset + select one
 Evolutionary algorithm-based method
« Random choice and probabilistic acceptance-based method

45

« Based on which LACs to consider and which to select

— Consider a random subset + select one
 Evolutionary algorithm-based method

46

Evolutionary Algorithm-based Method

« Genetic algorithm: mimic the process of natural selection

&

new generation

/ N Ll b Ll
// \\\ T T
/
@Vl Wl m™
/ : ’t' l‘W‘} ‘u-ut’fn Each approx.
mu ? ion evaluatibnor — circuit is an
Gener_ate_ l each individual individual
New CIrcuits \ "
\
N VO ga
” a . n 7 N\ v S i]
. v v elect circuits
reproduction selection \by their errors

47

Evolutionary Algorithm-based Method

* Represent circuit (individual) as a chromosome
— Assume circuit has n; primary inputs and n, primary outputs
— A candidate circuit is modeled as a gate array of n,. internal nodes
— Primary inputs and nodes are labeled as 0,1, ...,n; — 1,n;,n; + 1, ...,n; +
n.—1
— Encode each node as (faninliID, fanin2ID, gateTypelD)
— Last part contains n, values specifying the outputs

0 5

G=—I 1 pl .
L n 1 : : i— L =- AND:O
= ey eber pbebbe s s |
o =3

Chromosome: (1, 3, 0); (0, 2, 0); (1, 2, 0); (0, 1, 0); (7, 6, 1); (8, 8, 1); [5, 8, 4, °0’]

Vasicek & Sekanina, “Evolutionary approach to approximate digital circuits design,” Trans. Evo. Compt. 15 48

Evolutionary Algorithm-based Method

Ste
Ste
Ste

Ste
the

0 1: create initial population of size (1 + 1)

D 2: ca
N 3: se

0 4: ap
parent

culate MED for each candidate circuit
ect the candidate circuit with the lowest MED as the parent

plying point mutation to generate A offspring individuals from

Step 5: go to Step 2 unless termination condition is satisfied

Chromosome: (1, 3, 0); (0, 2, 0); (1, 2, 0); (0, 1, 0); (7, 6, 1); (8, 8, 1); [5, 8, 4, °0’]

49

« Based on which LACs to consider and which to select

— Consider a random subset + select one

« Random choice and probabilistic acceptance-based method

50

Random Choice and Probabillistic Acceptance

| : _ Traditional
_ l _ 1 I ' . == logic
D T T T synthesis

reduce flip N add /

* Which LACs to consider? Randomly choose one

« Should it be applied? (i.e., selection criterion)
— Calculate quality metric: Q = a - Area,,, + - ErrorMetric
— Accept a move stochastically
« |If the move improves the guality, accept the move
. Otherwise, accept with probability e =¥ (@new/Qota)

Liu & Zhang, “Statistically certified approximate logic synthesis,” ICCAD’17 o1

« Applications of Approximate Circuits
— Image Processing
— Deep Neural Networks

52

« Applications of Approximate Circuits
— Image Processing

53

Edge Detection Application

-1 0 1 -1 -2 -1
« Sobel edge detection o0,=|-2 o0 2]®Ix,0y= 0 0 0]®1y
-1 0 1 1 2 1

« Approximate adder generated by approximate logic synthesis [Meng+, DAC’'20]

T‘ synthesized

| Out by 16-bit Otpu

Input image)
accurate adder approximate adder
Area (um?) 82.73 56.9
Delay (ns) 5 2.8
Area x Delay 413 159 (2.6X) 54

« Applications of Approximate Circuits

— Deep Neural Networks

55

Deep Neural Networks (DNNSs)

pooled Fully-connected 1

feature maps pooled featuremaps feature maps
feature maps |

-
I,

r _

plylx)

00000000

Outputs
Input

Convolutional Pooling 1 Convolutional
layer 1 layer 2

Pooling 2

* Many arithmetic operations

56

Low-Power DNN Accelerator by Approximate Logic Synthesis

Fits better with the

. neural network
Approximate

Multiplier

Synthes? Train
App[gX|ir(r:1ate « Input « Neural
gic Distribution Network
Synthesis .
Profile

ian+, ISCAS’21
[Qian+, ISCAS’21] 57

Experimental Results

« LeNet-5 + MNIST dataset
« Synthesize approximate multipliers [Meng+, DAC'20]
« Loop has 5 iterations

Circuit type error area | delay | accurac
bound

Accurate 8-bit multiplier 1326 27.1 99. OO%
Approximate multiplier 1 0.001 966 27 98.86%
Approximate multiplier 2 0.003 786 26 98.74%
Approximate multiplier 3 0.006 202 18.1 98.67%
Final design Approximate multiplier 4 0.012 73 10.7 98.44%
(Area 4.2% of —— Approximate multiplier 5 0.024 56 6.7 97.86%

the accurate

i o) .
multiplier) 2-bit rounded multiplier 72 7.7 97.52%

58

« Conclusion

59

Conclusion

Error

« Approximate computing
— Targeting at error-tolerant application
— Trading accuracy for area/delay/power
* Logic synthesis for approximate circuits
— Consider a deterministic subset of LACs + select one
— Consider a deterministic subset of LACs + select multiple
— Consider a random subset of LACs + select one
« Applications of approximate circuits
— Image Processing
— Deep Neural Networks

Power

60

	幻灯片 1: Logic Synthesis for Approximate Computing Circuits
	幻灯片 2: Moore’s Law
	幻灯片 3: Exploration in Post-Moore Era
	幻灯片 4: Outline
	幻灯片 5: Outline
	幻灯片 6
	幻灯片 7: Error Tolerance E.g. 1: No Golden Answer
	幻灯片 8: Error Tolerance 2: No Need Exact Numerical Values
	幻灯片 9: No Need Exact Numerical Values
	幻灯片 10: Error Tolerance 3: Limitation of Human Perception
	幻灯片 11: Approximate Computing
	幻灯片 12: Approximate Computing
	幻灯片 13: Approximate Circuit
	幻灯片 14: New Design Space with Approx. Computing!
	幻灯片 15: Approximate Logic Synthesis
	幻灯片 16: Error Metrics
	幻灯片 17: Error Metrics
	幻灯片 18: Outline
	幻灯片 19: Iterative Framework
	幻灯片 20: Iterative Framework: Key Problems
	幻灯片 21: Classification
	幻灯片 22: Outline
	幻灯片 23: Outline
	幻灯片 24: Constant Replacement
	幻灯片 25: Constant Replacement
	幻灯片 26: Outline
	幻灯片 27: SASIMI: Signal Substitution
	幻灯片 28: SASIMI: Signal Substitution
	幻灯片 29: Outline
	幻灯片 30: ALSRAC: Resubstitution
	幻灯片 31: ALSRAC Methodology
	幻灯片 32: ALSRAC Methodology
	幻灯片 33: Which LACs to Consider and Which to Select?
	幻灯片 34: Outline
	幻灯片 35: Outline
	幻灯片 36: Approximate Node Simplification
	幻灯片 37: Approximate Node Simplification
	幻灯片 38: Selection Problem: Multiple Selection
	幻灯片 40: Mapping to 0/1 Multi-state Knapsack Problem
	幻灯片 41: Outline
	幻灯片 42: Delay Optimization
	幻灯片 43: Delay Optimization: Basic Idea
	幻灯片 44: Delay Optimization: Finding Optimized LACs
	幻灯片 45: Outline
	幻灯片 46: Outline
	幻灯片 47: Evolutionary Algorithm-based Method
	幻灯片 48: Evolutionary Algorithm-based Method
	幻灯片 49: Evolutionary Algorithm-based Method
	幻灯片 50: Outline
	幻灯片 51: Random Choice and Probabilistic Acceptance
	幻灯片 52: Outline
	幻灯片 53: Outline
	幻灯片 54: Edge Detection Application
	幻灯片 55: Outline
	幻灯片 56: Deep Neural Networks (DNNs)
	幻灯片 57: Low-Power DNN Accelerator by Approximate Logic Synthesis
	幻灯片 58: Experimental Results
	幻灯片 59: Outline
	幻灯片 60: Conclusion
	幻灯片 61: Thank you

