
Logic Synthesis for

Approximate Computing Circuits

Chang Meng, Postdoc

November 19, 2024

Moore’s Law

2

Log-

Scale

data

[Semianalysis, 2023]

Exploration in Post-Moore Era

3

New Device

US DARPA Joint University Microelectronics Program (JUMP)

New ArchitectureApproximate

Computing

Computing

Diagrams

Outline

• Background on Approximate Computing

• Logic Synthesis for Approximate Circuits

• Applications of Approximate Circuits

• Conclusion

4

Outline

• Background on Approximate Computing

• Logic Synthesis for Approximate Circuits

• Applications of Approximate Circuits

• Conclusion

5

6

Our World Is Approxmate

Our World Is Approximate

Error Tolerance E.g. 1: No Golden Answer

ChatGPT

ANSWER 1

ANSWER 2

7

Error Tolerance 2: No Need Exact Numerical Values

Mixed precision architecture in NVIDIA GPU

8

No Need Exact Numerical Values

• Deep neural network classifier

9

8

0

Similarity (probability)

0.659

0.106

0.671

0.642


9

1 0.031

0.093

..
.

..
.

Error Tolerance 3: Limitation of Human Perception

Noise doesn’t affect recognition of the sportsman [Han+, 13]
10

Picture without noise Picture with noise

Approximate Computing

11
AI accelerator IoT system

Machine learningLanguage processing Image processing

❑ Error-tolerant apps: system-level functions not affected by small errors

❑ Deliberately introduce small errors ➔ reduce power consumption

❑ Reduce power for

Embedded device

Approximate Computing

• Sacrifice accuracy for performance and energy improvement

12

Algorithm

Compiler

Architecture

Circuit Error Energy Error Energy

Accurate

computing
Approximate

computing

Error Energy

0 error

Small
error

Approximate Circuit

❑Trade off accuracy ➔

reduce power, delay & area

❑Karnaugh map for a 2x2 multiplier

13
[Kulkarni+, 11]

00 01 11 10

00 0000 0000 0000 0000

01 0000 0001 0011 0010

11 0000 0011 1001 0110

10 0000 0010 0110 0100

𝑏1𝑏0
𝑎1𝑎0

0111

Exact circuit

Approximate
circuit

Error rate

=1/16

1b

1a

0b

1a

1b

0a

0a
0b

3out

2out

1out

0out

1b

1a

0b

1a

1b

0a

0a
0b

2out

1out

0out

Fewer & simpler gates
➔ smaller area &

lower power

New Design Space with Approx. Computing!

• Opportunities: Large design space

• Challenges: how to find low-power designs efficiently?

14

2D design space

Delay

Power

Different designs

Optimal tradeoff

3D design space

Power

Error

Traditional computing Approximate computing

Approximate Logic Synthesis

15

Logic

synthesis

algorithm

Original

Design

Approximate

Design
Error

Specification

(E.g., error rate < 1%)

00 01 11 10

00 000 000 000 000

01 000 001 011 010

11 000 011 110

10 000 010 110 100

1001

B1B0

A1A0

What’s the

optimal way to

introduce error?

Error Metrics

Error rate (ER): Pr(Ԧ𝑓(𝑋) ≠ Ԧ𝑓′(𝑋))

– Ԧ𝑓 is circuit function, 𝑋 is circuit input

• Error distance (ED): Applicable to arithmetic circuits

– Maximal ED (MaxED): max
𝑋

| Ԧ𝑓 𝑋 − Ԧ𝑓′(𝑋)|

– Mean ED (MED): 𝐸 Ԧ𝑓 𝑋 − Ԧ𝑓′ 𝑋

16

00 01 11 10

00 0000 0000 0000 0000

01 0000 0001 0011 0010

11 0000 0011 1110

10 1000 1010 1110 1100

1001

B1B0

A1A0

0111

ER = 2/16

MaxED = 2

MED = 3/16

0011

Error Metrics

• Normalized mean error distance (NMED)

𝐸 Ԧ𝑓 𝑋 − Ԧ𝑓′ 𝑋

2𝑂 − 1
– 𝑂 is the number of output bits

• Mean relative error distance (MRED)

𝐸
Ԧ𝑓 𝑋 − Ԧ𝑓′ 𝑋

Ԧ𝑓 𝑋

17

Outline

• Background on Approximate Computing

• Logic Synthesis for Approximate Circuits

• Applications of Approximate Circuits

• Conclusion

18

Iterative Framework

• Local approximate changes (LACs) + Iterative improvement

19

Local

Circuit 3

LAC2LAC1

LAC4

LAC5LAC3

Local

Circuit 1

Local

Circuit 2
..

...
.

..
.

Local

Circuit 3

LAC7LAC6

LAC4

LAC5LAC3

Local

Circuit 4

Local

Circuit 2

..
...

.
..

.

…

Iterative Framework: Key Problems

• Which types of LACs?

• For all the LACs, which of them should be considered?

• From those considered, which of them should be finally selected?

20

Local

Circuit 3

LAC2LAC1

LAC4

LAC5LAC3

Local

Circuit 1

Local

Circuit 2
..

...
.

..
.

Local

Circuit 3

LAC7LAC6

LAC4

LAC5LAC3

Local

Circuit 4

Local

Circuit 2

..
...

.
..
. …

Classification

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

21

Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

• Constant replacement-based LAC

• Signal substitution-based LAC

• Resubstitution-based LAC

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

22

Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

• Constant replacement-based LAC

• Signal substitution-based LAC

• Resubstitution-based LAC

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

23

Constant Replacement

24

Replace with 1

Shin & Gupta, “A new circuit simplification method for error tolerant applications,” DATE’11

• Which types of LACs?

– Constant replacement

Constant Replacement

25

Replace with 1

• For all the LACs, which of them should be considered?

– Consider all the wires, and for each wire, consider both choices (0/1)

• From those considered, which of them should be finally selected?

– Select the one with the largest 𝐴𝑟𝑒𝑎𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛/(𝐸𝑅 ∗ 𝑀𝑎𝑥𝐸𝐷)

Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

• Constant replacement-based LAC

• Signal substitution-based LAC

• Resubstitution-based LAC

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

26

SASIMI: Signal Substitution

27

S

T

S

T

Venkataramani et al., “Substitute-and-Simplify: A Unified Design Paradigm for Approximate and

Quality Configurable Circuits,” DATE’13

• Which types of LACs?

– Signal substitution

– Basic idea: find two signals not identical but very close

S: 0010001101

T: 0011001101

SASIMI: Signal Substitution

28

S

T

S

T

• For all the LACs, which of them should be considered?

– Consider all the signal pairs (𝑆𝑢𝑏𝑆𝑖𝑔𝑛𝑎𝑙, 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑖𝑔𝑛𝑎𝑙) and

(𝑆𝑢𝑏𝑆𝑖𝑔𝑛𝑎𝑙, 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑖𝑔𝑛𝑎𝑙)

• From those considered, which of them should be finally selected?

– Select the one with the largest

(𝛼 ∙ 𝐴𝑟𝑒𝑎𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 1 − 𝛼 𝐷𝑒𝑙𝑎𝑦𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)/(𝑃𝑑𝑖𝑓𝑓(1 − 𝑃𝑑𝑖𝑓𝑓))

– 𝑃𝑑𝑖𝑓𝑓 = Pr(𝑆𝑢𝑏𝑆𝑖𝑔𝑛𝑎𝑙 ≠ 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑖𝑔𝑛𝑎𝑙)

Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

• Constant replacement-based LAC

• Signal substitution-based LAC

• Resubstitution-based LAC

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

29

ALSRAC: Resubstitution

30

Can we resubstitute v as a

function of u and z? NO!

• abcd = 0001 ➔ uz = 10, v =0

• abcd = 0010 ➔ uz = 10, v =1

But, we can approximately

resubstitute v as a function

of z and u!

Meng, Qian & Mishchenko, “ALSRAC: approximate logic synthesis by resubstitution

with approximate care set,” DAC’20

Code: https://github.com/SJTU-ECTL/ALSRAC

https://github.com/SJTU-ECTL/ALSRAC

ALSRAC Methodology

• Step 1: Use random logic simulation to generate approximate care set

31

• Randomly select 5 input patterns (in red)

and simulate the circuit

• Only care the patterns appeared in

simulation

• Other patterns are treated as don’t-cares

ALSRAC Methodology

• Step 2: Build truth table and check feasibility

32

• No conflicts in the truth table (each 𝑢𝑧 pattern

corresponds to only one value of ො𝑣)

• Truth table of approximate function: ො𝑣 = ത𝑢 + ҧ𝑧

Which LACs to Consider and Which to Select?

• 𝑢 and 𝑧 are called divisors of 𝑣

• LACs: (𝑣, 𝐷𝑖𝑣𝑖𝑠𝑜𝑟𝑆𝑒𝑡), e.g., (𝑣, {𝑢, 𝑧})

• For each node 𝑣, consider the following

divisors

– Remove a fanin of 𝑣, i.e., 𝑧 , {𝑤}

– Replace a fanin of 𝑣 by another node in 𝑣’s TFI

cone, i.e.,

𝑧, 𝑎 , 𝑧, 𝑏 , 𝑧, 𝑐 , 𝑧, 𝑑 , 𝑧, 𝑥 , 𝑧, 𝑦 , 𝑧, 𝑢 ,
𝑤, 𝑎 , 𝑤, 𝑏 , 𝑤, 𝑐 , 𝑤, 𝑑 , 𝑤, 𝑥 , 𝑤, 𝑦 , {𝑤, 𝑢}

33

• Which LACs to consider?

• Which LAC(s) to select?

• Select the one with the smallest error

Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

• Approximate node simplification

• Delay-driven ALS

– Consider a random subset + select one

34

Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

• Approximate node simplification

• Delay-driven ALS

– Consider a random subset + select one

35

Approximate Node Simplification

36

𝑦 = 𝑥 + 𝑐

𝑥 = 𝑎𝑏
𝑎

𝑏

𝑐
𝑦

𝑥

Primary

Inputs

Primary

Outputs

Internal

Nodes

𝑥 and 𝑦 are Boolean function.

• Work on Boolean logic network model

• A direct acyclic graph. Each node is a Boolean function

• Boolean function could be in either sum-of-product (SOP) form

or factored form

• What to optimize? Total literal count

#Literals = 5

Wu & Qian, “An efficient method for

multi-level approximate logic synthesis

under error rate constraint,” DAC’16

Approximate Node Simplification

• Work on factored-form expression of a node

• Simplify it by removing some literals

• An approximation; can cause error

• Call the result approximate simplified expression (ASE)

37

𝑛 = (𝑎 + 𝑏)(𝑐 + 𝑑)

remove 1 literal

𝑛 = 𝑎(𝑐 + 𝑑) 𝑛 = 𝑏(𝑐 + 𝑑) 𝑛 = 𝑎 + 𝑏 𝑐 𝑛 = 𝑎 + 𝑏 𝑑

• Each node has multiple

ASEs

• Consider all the nodes

and all their ASEs

Selection Problem: Multiple Selection

38

f

n2=n1i3

n1=i1i2 n3=n2i0

i0

i1

i2

i3

• Questions:

1. Which set of nodes should we choose to make change?

2. For these chosen nodes, which of their ASEs should we pick?

• Proposed solution: model this as a 0/1 multi-state knapsack

problem

Mapping to 0/1 Multi-state Knapsack Problem

40

➢ A node → an candidate item

➢ An ASE of a node → a state of a item

➢ Error rate of an ASE → weight

➢ Number of saved literals → value

➢ Error rate margin → capacity of knapsack

• Multi-state knapsack problem can be solved by extending the classical

dynamic programming solution to basic 0/1 knapsack problem

• Flow: after each round of multi-selection, evaluate actual error rate,

update error rate margin and do another round until margin used up

Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

• Approximate node simplification

• Delay-driven ALS

– Consider a random subset + select one

41

Delay Optimization

• Area-Driven ALS Is Not Good in Reducing Delay

– Applying local approximate changes (LACs) on non-critical gates

– Applying LAC on a single critical gate is not effective, since there

exist multiple critical paths

42

1

2

3

4

5

7

6

8

9

10

11

PIs POs



1

2

3

4

5

7

6

8

9

10

11

PIs POs



Zhou et al., “DALS: delay-driven approximate logic synthesis,” ICCAD’18

Delay Optimization: Basic Idea

43

Constant

Replacement 0

Obtain critical graph

Find a critical cut and

a set of LACs with

minimum error impact

Apply the best choice (cut + LACs)

to get new approximate circuit

Until error bound

is reached ?

• Apply depth-reduction local approximate changes

(LACs) to critical cut of the critical graph

• Main flow

Delay Optimization: Finding Optimized LACs

• Focus on the min-error

LAC for each node

44

1

2

3

4

5

6

8

9

7

PIs

POs

11

10

LAC1
LAC2

LAC3

0.07
0.11

0.03

• Which cut to select?

– Solve a network flow problem

Errors

Errors

Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

• Evolutionary algorithm-based method

• Random choice and probabilistic acceptance-based method

45

Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

• Evolutionary algorithm-based method

• Random choice and probabilistic acceptance-based method

46

Evolutionary Algorithm-based Method

• Genetic algorithm: mimic the process of natural selection

47

Each approx.
circuit is an
individual

Select circuits
by their errors

Generate
new circuits

Evolutionary Algorithm-based Method

• Represent circuit (individual) as a chromosome

– Assume circuit has 𝑛𝑖 primary inputs and 𝑛𝑜 primary outputs

– A candidate circuit is modeled as a gate array of 𝑛𝑐 internal nodes

– Primary inputs and nodes are labeled as 0,1,… , 𝑛𝑖 − 1, 𝑛𝑖 , 𝑛𝑖 + 1,… , 𝑛𝑖 +
𝑛𝑐 − 1

– Encode each node as (𝑓𝑎𝑛𝑖𝑛1𝐼𝐷, 𝑓𝑎𝑛𝑖𝑛2𝐼𝐷, 𝑔𝑎𝑡𝑒𝑇𝑦𝑝𝑒𝐼𝐷)

– Last part contains 𝑛𝑜 values specifying the outputs

48

Chromosome: (1, 3, 0); (0, 2, 0); (1, 2, 0); (0, 1, 0); (7, 6, 1); (8, 8, 1); [5, 8, 4, ‘0’]

AND: 0

OR: 1

Vasicek & Sekanina, “Evolutionary approach to approximate digital circuits design,” Trans. Evo. Compt.’15

Evolutionary Algorithm-based Method

• Step 1: create initial population of size 1 + 𝜆

• Step 2: calculate MED for each candidate circuit

• Step 3: select the candidate circuit with the lowest MED as the parent

• Step 4: applying point mutation to generate 𝜆 offspring individuals from

the parent

• Step 5: go to Step 2 unless termination condition is satisfied

49

Chromosome: (1, 3, 0); (0, 2, 0); (1, 2, 0); (0, 1, 0); (7, 6, 1); (8, 8, 1); [5, 8, 4, ‘0’]

Outline

• Based on which LACs to consider and which to select

– Consider a deterministic subset + select one

– Consider a deterministic subset + select multiple

– Consider a random subset + select one

• Evolutionary algorithm-based method

• Random choice and probabilistic acceptance-based method

50

Random Choice and Probabilistic Acceptance

• LACs

• Which LACs to consider? Randomly choose one

• Should it be applied? (i.e., selection criterion)

– Calculate quality metric: 𝑄 = 𝛼 ∙ 𝐴𝑟𝑒𝑎𝑚 + 𝛽 ∙ 𝐸𝑟𝑟𝑜𝑟𝑀𝑒𝑡𝑟𝑖𝑐

– Accept a move stochastically

• If the move improves the quality, accept the move

• Otherwise, accept with probability 𝑒−𝛾(𝑄𝑛𝑒𝑤/𝑄𝑜𝑙𝑑)

51

increase area

Liu & Zhang, “Statistically certified approximate logic synthesis,” ICCAD’17

Traditional

logic

synthesis

Outline

• Background on Approximate Computing

• Logic Synthesis for Approximate Circuits

• Applications of Approximate Circuits

– Image Processing

– Deep Neural Networks

• Conclusion

52

Outline

• Background on Approximate Computing

• Logic Synthesis for Approximate Circuits

• Applications of Approximate Circuits

– Image Processing

– Deep Neural Networks

• Conclusion

53

Edge Detection Application

• Sobel edge detection

• Approximate adder generated by approximate logic synthesis [Meng+, DAC’20]

54

Input image Output by 16-bit

accurate adder

Output by synthesized

approximate adder

Area (um2) 82.73 56.9

Delay (ns) 5 2.8

Area x Delay 413 159 (2.6X)

𝑂𝑥 =
−1 0 1
−2 0 2
−1 0 1

⊛ 𝐼𝑥, 𝑂𝑦 =
−1 −2 −1
0 0 0
1 2 1

⊛ 𝐼𝑦

Outline

• Background on Approximate Computing

• Logic Synthesis for Approximate Circuits

• Applications of Approximate Circuits

– Image Processing

– Deep Neural Networks

• Conclusion

55

Deep Neural Networks (DNNs)

56

• Many arithmetic operations

Low-Power DNN Accelerator by Approximate Logic Synthesis

57

Approximate

Multiplier

Neural

Network

Approximate

Logic

Synthesis

Input

Distribution

Train

Profile

Synthesize

Fits better with the

neural network

[Qian+, ISCAS’21]

Experimental Results

• LeNet-5 + MNIST dataset

• Synthesize approximate multipliers [Meng+, DAC’20]

• Loop has 5 iterations

58

Circuit type error

bound

area delay accurac

y

Accurate 8-bit multiplier - 1326 27.1 99.00%

Approximate multiplier 1 0.001 966 27 98.86%

Approximate multiplier 2 0.003 786 26 98.74%

Approximate multiplier 3 0.006 202 18.1 98.67%

Approximate multiplier 4 0.012 73 10.7 98.44%

Approximate multiplier 5 0.024 56 6.7 97.86%

2-bit rounded multiplier - 72 7.7 97.52%

Final design

(Area 4.2% of

the accurate

multiplier)

Outline

• Background on Approximate Computing

• Logic Synthesis for Approximate Circuits

• Applications of Approximate Circuits

• Conclusion

59

Conclusion

• Approximate computing

– Targeting at error-tolerant application

– Trading accuracy for area/delay/power

• Logic synthesis for approximate circuits

– Consider a deterministic subset of LACs + select one

– Consider a deterministic subset of LACs + select multiple

– Consider a random subset of LACs + select one

• Applications of approximate circuits

– Image Processing

– Deep Neural Networks

60

Thank
you

	幻灯片 1: Logic Synthesis for Approximate Computing Circuits
	幻灯片 2: Moore’s Law
	幻灯片 3: Exploration in Post-Moore Era
	幻灯片 4: Outline
	幻灯片 5: Outline
	幻灯片 6
	幻灯片 7: Error Tolerance E.g. 1: No Golden Answer
	幻灯片 8: Error Tolerance 2: No Need Exact Numerical Values
	幻灯片 9: No Need Exact Numerical Values
	幻灯片 10: Error Tolerance 3: Limitation of Human Perception
	幻灯片 11: Approximate Computing
	幻灯片 12: Approximate Computing
	幻灯片 13: Approximate Circuit
	幻灯片 14: New Design Space with Approx. Computing!
	幻灯片 15: Approximate Logic Synthesis
	幻灯片 16: Error Metrics
	幻灯片 17: Error Metrics
	幻灯片 18: Outline
	幻灯片 19: Iterative Framework
	幻灯片 20: Iterative Framework: Key Problems
	幻灯片 21: Classification
	幻灯片 22: Outline
	幻灯片 23: Outline
	幻灯片 24: Constant Replacement
	幻灯片 25: Constant Replacement
	幻灯片 26: Outline
	幻灯片 27: SASIMI: Signal Substitution
	幻灯片 28: SASIMI: Signal Substitution
	幻灯片 29: Outline
	幻灯片 30: ALSRAC: Resubstitution
	幻灯片 31: ALSRAC Methodology
	幻灯片 32: ALSRAC Methodology
	幻灯片 33: Which LACs to Consider and Which to Select?
	幻灯片 34: Outline
	幻灯片 35: Outline
	幻灯片 36: Approximate Node Simplification
	幻灯片 37: Approximate Node Simplification
	幻灯片 38: Selection Problem: Multiple Selection
	幻灯片 40: Mapping to 0/1 Multi-state Knapsack Problem
	幻灯片 41: Outline
	幻灯片 42: Delay Optimization
	幻灯片 43: Delay Optimization: Basic Idea
	幻灯片 44: Delay Optimization: Finding Optimized LACs
	幻灯片 45: Outline
	幻灯片 46: Outline
	幻灯片 47: Evolutionary Algorithm-based Method
	幻灯片 48: Evolutionary Algorithm-based Method
	幻灯片 49: Evolutionary Algorithm-based Method
	幻灯片 50: Outline
	幻灯片 51: Random Choice and Probabilistic Acceptance
	幻灯片 52: Outline
	幻灯片 53: Outline
	幻灯片 54: Edge Detection Application
	幻灯片 55: Outline
	幻灯片 56: Deep Neural Networks (DNNs)
	幻灯片 57: Low-Power DNN Accelerator by Approximate Logic Synthesis
	幻灯片 58: Experimental Results
	幻灯片 59: Outline
	幻灯片 60: Conclusion
	幻灯片 61: Thank you

